

ABSTRACT

Magnetic phase transitions in multiferroic perovskite solid solutions based on BiFeO₃

<u>E. Čižmár</u>¹, S. Vorobiov¹, J.P.V. Cardoso², V.V. Shvartsman³, D.D. Khalyavin⁴, E.L. Fertman⁵, A.V. Fedorchenko⁵, A.V. Pushkarev⁶, Y.V. Radyush⁶, N.M. Olekhnovich⁶, A. Feher¹, J.M. Vieira², A.N. Salak²

 ¹Institute of Physics, P.J. Šafárik University, Košice, Slovakia
²Department of Materials and Ceramics Engineering/CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
³Institute for Materials Science and CENIDE-Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Essen, Germany
⁴ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxforshire, UK
⁵B. Verkin Institute for Low Temperature Physics and Engineering of the NASU, Kharkiv, Ukraine
⁶Scientific-Practical Materials Research Centre of the NASB, Minsk, Belarus

Lead-free materials with piezo properties comparable to those observed in lead zirconate-titanate at the morphotropic phase boundary are of current application interest. Most of the reported singlephase perovskite BiFe_{1-y} B^{3+} _yO₃ compositions with y>0.1 can be prepared only using the high-pressure synthesis technique and demonstrate a series of structural transitions with increasing y. The annealing of the as-prepared metastable perovskites may result in irreversible transformations into new perovskite phases with unique combinations of ferroic orders [1]. Particularly, in the $0.1 \le y < 0.3$ range of the BiFe_{1-y}Sc_yO₃ solid solution system, the anomalies associated with possible transitions between three different antiferromagnetic (AFM) structures (collinear, canted, and cycloidal spin arrangements) were observed below Néel temperature (T_N) [2]. Therefore, the Fe-rich compositional range of the BiFe_{1-y}[Zn_{0.5}Ti_{0.5}]_yO₃ with y=0.05-0.25 was studied. The $T_N(y)$ evolution was compared with that reported for compositions of the BiFe_{1-y} $B^{3+}_{y}O_{3}$ family with B^{3+} = Co, Mn, Cr, and Sc. It showed the same general trend, independent of both the type (magnetic or non-magnetic) and the size of substituting ion. The study of the temperature-dependent magnetic moment revealed similarities to $BiFe_{1,y}Sc_yO_{3,}$ but possible transformation between different AFM structures was observed only for $y \ge 0.2$. In addition, the short- and long-range structural distortions due to substitution or mechanical strain in BiFeO₃ may induce uncompensated induced ferromagnetic moment because of the suppression of cycloidal order or appearance of spin-canting. The evidence of the spin-canting is pronounced in all BiFe_{1-y}[$Zn_{0.5}Ti_{0.5}$]_yO₃ samples by a jump in magnetization close to a zero magnetic field, and the magnetization loops have a much higher coercive field in comparison to those observed in BiFe_{1-v}Sc_vO₃, up to 4.63 kOe found in the annealed BiFe_{0.85}[Zn_{0.5}Ti_{0.5}]_{0.15}O₃ at 300 K.

DSL2025 in Naples, Italy

This work was supported by APVV-22-0172, APVV-23-0006, and APVV-SK-BY-RD-19-0008 / T20SLKG-001.

- [1] D.D. Khalyavin, et al., ChemComm. 55, 4683 (2019).
- [2] E.L. Fertman, et al., Crystals 10, 950 (2020).